k8s-Prometheus-Alertmanager[邮箱]报警
配置alertmanager-发送报警到qq邮箱
报警:指prometheus将监测到的异常事件发送给alertmanager
通知:alertmanager将报警信息发送到邮件、微信、钉钉等
邮箱设置发告警的方法参考:https://blog.csdn.net/weixin_31869579/article/details/119265091
1.#创建alertmanager配置文件
[root@master01 alertmanager]# cat alertmanager-cm.yaml kind: ConfigMap apiVersion: v1 metadata: name: alertmanager namespace: monitor-sa data: alertmanager.yml: |- global: resolve_timeout: 1m smtp_smarthost: 'smtp.189.cn:465' smtp_from: '13319886377@189.cn' smtp_auth_username: '13319886377' smtp_auth_password: '你的密码/授权码' smtp_require_tls: false route: #用于配置告警分发策略 group_by: [alertname] # 采用哪个标签来作为分组依据 group_wait: 10s # 组告警等待时间。也就是告警产生后等待10s,如果有同组告警一起发出 group_interval: 10s # 上下两组发送告警的间隔时间 repeat_interval: 10m # 重复发送告警的时间,减少相同邮件的发送频率,默认是1h receiver: default-receiver #定义谁来收告警 receivers: - name: 'default-receiver' email_configs: - to: '30772818@qq.com' send_resolved: true
alertmanager配置文件解释说明:
#189邮箱的SMTP服务器地址+端口
smtp_smarthost: 'smtp.189.cn:465'
#这是指定从哪个邮箱发送报警
smtp_from: '13319886377@189.cn'
#这是发送邮箱的认证用户,不是邮箱名
smtp_auth_username: '13319886377'
#这是发送邮箱的授权码而不是登录密码,你们需要用自己的,不要用我的,用我的你会发不出来报警
smtp_auth_password: ' BGWHYUOSOOHWEUJM'
#to后面指定发送到哪个邮箱,我发送到我的qq邮箱,需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复
email_configs:
- to: '30772818@qq.com'
报警处理流程如下:
1. Prometheus Server监控目标主机上暴露的http接口(这里假设接口A),通过Promethes配置的'scrape_interval'定义的时间间隔,定期采集目标主机上监控数据。
2. 当接口A不可用的时候,Server端会持续的尝试从接口中取数据,直到"scrape_timeout"时间后停止尝试。这时候把接口的状态变为“DOWN”。
3. Prometheus同时根据配置的"evaluation_interval"的时间间隔,定期(默认1min)的对Alert Rule进行评估;当到达评估周期的时候,发现接口A为DOWN,即UP=0为真,激活Alert,进入“PENDING”状态,并记录当前active的时间;
4. 当下一个alert rule的评估周期到来的时候,发现UP=0继续为真,然后判断警报Active的时间是否已经超出rule里的‘for’ 持续时间,如果未超出,则进入下一个评估周期;如果时间超出,则alert的状态变为“FIRING”;同时调用Alertmanager接口,发送相关报警数据。
5. AlertManager收到报警数据后,会将警报信息进行分组,然后根据alertmanager配置的“group_wait”时间先进行等待。等wait时间过后再发送报警信息。
6. 属于同一个Alert Group的警报,在等待的过程中可能进入新的alert,如果之前的报警已经成功发出,那么间隔“group_interval”的时间间隔后再重新发送报警信息。比如配置的是邮件报警,那么同属一个group的报警信息会汇总在一个邮件里进行发送。
7. 如果Alert Group里的警报一直没发生变化并且已经成功发送,等待‘repeat_interval’时间间隔之后再重复发送相同的报警邮件;如果之前的警报没有成功发送,则相当于触发第6条条件,则需要等待group_interval时间间隔后重复发送。
同时最后至于警报信息具体发给谁,满足什么样的条件下指定警报接收人,设置不同报警发送频率,这里有alertmanager的route路由规则进行配置。
2.#创建prometheus和告警规则配置文件
[root@master01 alertmanager]# cat prometheus-alertmanager-cfg.yaml kind: ConfigMap apiVersion: v1 metadata: labels: app: prometheus name: prometheus-config namespace: monitor-sa data: prometheus.yml: | rule_files: - /etc/prometheus/rules.yml alerting: alertmanagers: - static_configs: - targets: ["localhost:9093"] global: scrape_interval: 15s scrape_timeout: 10s evaluation_interval: 1m scrape_configs: - job_name: 'kubernetes-node' kubernetes_sd_configs: - role: node relabel_configs: - source_labels: [__address__] regex: '(.*):10250' replacement: ':9100' target_label: __address__ action: replace - action: labelmap regex: __meta_kubernetes_node_label_(.+) - job_name: 'kubernetes-node-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes//proxy/metrics/cadvisor - job_name: 'kubernetes-apiserver' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name - job_name: 'kubernetes-pods' kubernetes_sd_configs: - role: pod relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_pod_annotation_prometheus_io_port target_label: __address__ - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - action: replace source_labels: - __meta_kubernetes_namespace target_label: kubernetes_namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: kubernetes_pod_name - job_name: 'kubernetes-schedule' scrape_interval: 5s static_configs: - targets: ['192.168.1.180:10251','192.168.1.181:10251','192.168.1.182:10251'] #scheduler组件所在节点的ip - job_name: 'kubernetes-controller-manager' scrape_interval: 5s static_configs: - targets: ['192.168.1.180:10252','192.168.1.181:10252','192.168.1.182:10252'] - job_name: 'kubernetes-kube-proxy' scrape_interval: 5s static_configs: #kube-proxy组件所在节点的ip - targets: ['192.168.1.180:10249','192.168.1.181:10249','192.168.1.182:10249','192.168.1.183:10249'] - job_name: 'kubernetes-etcd' scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key scrape_interval: 5s static_configs: #etcd组件所在节点的ip - targets: ['192.168.1.180:2379','192.168.1.181:2379','192.168.1.182:2379'] rules.yml: | groups: - name: example rules: - alert: kube-proxy的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: kube-proxy的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: scheduler的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: scheduler的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: controller-manager的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: controller-manager的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: apiserver的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: apiserver的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: etcd的cpu使用率大于80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: etcd的cpu使用率大于90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: kube-state-metrics的cpu使用率大于80% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%" value: "{{ $value }}%" threshold: "80%" - alert: kube-state-metrics的cpu使用率大于90% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%" value: "{{ $value }}%" threshold: "90%" - alert: coredns的cpu使用率大于80% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%" value: "{{ $value }}%" threshold: "80%" - alert: coredns的cpu使用率大于90% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%" value: "{{ $value }}%" threshold: "90%" - alert: kube-proxy打开句柄数>600 expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kube-proxy打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-schedule打开句柄数>600 expr: process_open_fds{job=~"kubernetes-schedule"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-schedule打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-schedule"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-controller-manager打开句柄数>600 expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-controller-manager打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-apiserver打开句柄数>600 expr: process_open_fds{job=~"kubernetes-apiserver"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-apiserver打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-etcd打开句柄数>600 expr: process_open_fds{job=~"kubernetes-etcd"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-etcd打开句柄数>1000 expr: process_open_fds{job=~"kubernetes-etcd"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: coredns expr: process_open_fds{k8s_app=~"kube-dns"} > 600 for: 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600" value: "{{ $value }}" - alert: coredns expr: process_open_fds{k8s_app=~"kube-dns"} > 1000 for: 2s labels: severity: critical annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000" value: "{{ $value }}" - alert: kube-proxy expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: scheduler expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-controller-manager expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-apiserver expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-etcd expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kube-dns expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: HttpRequestsAvg expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000" value: "{{ $value }}" threshold: "1000" - alert: Pod_restarts expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0 for: 2s labels: severity: warnning annotations: description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的" value: "{{ $value }}" threshold: "0" - alert: Pod_waiting expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1 for: 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中" value: "{{ $value }}" threshold: "1" - alert: Pod_terminated expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1 for: 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除" value: "{{ $value }}" threshold: "1" - alert: Etcd_leader expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader" value: "{{ $value }}" threshold: "0" - alert: Etcd_leader_changes expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变" value: "{{ $value }}" threshold: "0" - alert: Etcd_failed expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败" value: "{{ $value }}" threshold: "0" - alert: Etcd_db_total_size expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000 for: 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G" value: "{{ $value }}" threshold: "10G" - alert: Endpoint_ready expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1 for: 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用" value: "{{ $value }}" threshold: "1" - name: 物理节点状态-监控告警 rules: - alert: 物理节点cpu使用率 expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90 for: 2s labels: severity: ccritical annotations: summary: "{{ $labels.instance }}cpu使用率过高" description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: 物理节点内存使用率 expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90 for: 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}内存使用率过高" description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: InstanceDown expr: up == 0 for: 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}: 服务器宕机" description: "{{ $labels.instance }}: 服务器延时超过2分钟" - alert: 物理节点磁盘的IO性能 expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!" description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})" - alert: 入网流量带宽 expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入网络带宽过高!" description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}" - alert: 出网流量带宽 expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流出网络带宽过高!" description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}" - alert: TCP会话 expr: node_netstat_Tcp_CurrEstab > 1000 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!" description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)" - alert: 磁盘容量 expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!" description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
[root@master01 alertmanager]# kubectl apply -f prometheus-alertmanager-cfg.yaml configmap/prometheus-config configured
3.生成一个etcd-certs,这个在部署prometheus需要
[root@master01 alertmanager]# kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt secret/etcd-certs created
4.通过kubectl apply更新资源清单yaml文件
[root@master01 prometheus]# kubectl delete -f prometheus-deploy.yaml deployment.apps "prometheus-server" deleted [root@master01 prometheus]# cd alertmanager/ [root@master01 alertmanager]# kubectl apply -f prometheus-alertmanager-deploy.yaml deployment.apps/prometheus-server created
#查看prometheus是否部署成功
[root@master01 alertmanager]# kubectl get pod -n monitor-sa NAME READY STATUS RESTARTS AGE kube-state-metrics-d5c6498b9-mm4x7 1/1 Running 0 11h node-exporter-4dj69 1/1 Running 0 12h node-exporter-gc5ln 1/1 Running 0 12h node-exporter-nq8rl 1/1 Running 0 12h prometheus-server-6568c8d67-wh8fb 2/2 Running 0 5s
5.通过kubectl apply更新yaml文件
[root@master01 alertmanager]# kubectl apply -f alertmanager-svc.yaml
alertmanager-svc.yaml文件内容如下:
[root@master01 alertmanager]# cat alertmanager-svc.yaml --- apiVersion: v1 kind: Service metadata: labels: name: prometheus kubernetes.io/cluster-service: 'true' name: alertmanager namespace: monitor-sa spec: ports: - name: alertmanager nodePort: 30066 port: 9093 protocol: TCP targetPort: 9093 selector: app: prometheus sessionAffinity: None type: NodePort
6.解决端口不暴露问题
从上面可以发现kubernetes-controller-manager和kubernetes-schedule都显示连接不上对应的端口
可按如下方法处理:
kube-scheduler:
vim /etc/kubernetes/manifests/kube-scheduler.yaml
修改如下内容:
把--bind-address=127.0.0.1变成--bind-address=192.168.1.180
把httpGet:字段下的hosts由127.0.0.1变成192.168.1.180
把—port=0删除
[root@master01 alertmanager]# vim /etc/kubernetes/manifests/kube-scheduler.yaml [root@master02 ~]# vi /etc/kubernetes/manifests/kube-scheduler.yaml [root@master03 ~]# vi /etc/kubernetes/manifests/kube-scheduler.yaml
#注意:192.168.1180是k8s的控制节点master01的ip
kubernetes-controller-manager:
把--bind-address=127.0.0.1变成--bind-address=192.168.1.180
把httpGet:字段下的hosts由127.0.0.1变成192.168.40.180
把—port=0删除
[root@master01 alertmanager]# vim /etc/kubernetes/manifests/kube-controller-manager.yaml [root@master02 ~]# vi /etc/kubernetes/manifests/kube-controller-manager.yaml
修改之后在k8s各个节点执行
systemctl restart kubelet
[root@master01 alertmanager]# systemctl restart kubelet [root@master02 alertmanager]# systemctl restart kubelet
[root@master01/02 alertmanager]# kubectl get cs Warning: v1 ComponentStatus is deprecated in v1.19+ NAME STATUS MESSAGE ERROR controller-manager Healthy ok scheduler Healthy ok etcd-0 Healthy {"health":"true"}
可以看到相应的端口被监听
[root@master01 alertmanager]# ss -antulp | grep :10251 tcp LISTEN 0 4096 :::10251 :::* users:(("kube-scheduler",pid=42425,fd=7)) [root@master01 alertmanager]# ss -antulp | grep :10252 tcp LISTEN 0 4096 :::10252 :::* users:(("kube-controller",pid=51997,fd=7))
kube-proxy端口10249访问不到
是因为kube-proxy默认端口10249是监听在127.0.0.1上的,需要改成监听到物理节点上,按如下方法修改,线上建议在安装k8s的时候就做修改,这样风险小一些:
//一个master上执行就行了 [root@master01 alertmanager]# kubectl edit configmap kube-proxy -n kube-system
把metricsBindAddress这段修改成metricsBindAddress: 0.0.0.0:10249
metricsBindAddress: "0.0.0.0:10249"
然后重新启动kube-proxy这个pod
[root@master01 alertmanager]# kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system pod "kube-proxy-56cmd" deleted pod "kube-proxy-6wvwq" deleted pod "kube-proxy-8tj6s" deleted pod "kube-proxy-z7ff4" deleted
[root@master01 alertmanager]# ss -antulp |grep :10249 tcp LISTEN 0 4096 :::10249 :::* users:(("kube-proxy",pid=107577,fd=13)) [root@master02 ~]# ss -antulp |grep :10249 tcp LISTEN 0 4096 :::10249 :::* users:(("kube-proxy",pid=104402,fd=15)) [root@node01 ~]# ss -antulp |grep :10249 tcp LISTEN 0 4096 :::10249 :::* users:(("kube-proxy",pid=24390,fd=14))
点击Alerts,可看到如下
FIRING表示prometheus已经将告警发给alertmanager,在Alertmanager 中可以看到有一个 alert。
登录到alertmanager web界面
邮箱里显示的报警信息
扩展:暴力更新配置文件
修改prometheus任何一个配置文件之后,可通过kubectl apply使配置生效,执行顺序如下:
kubectl delete -f alertmanager-cm.yaml
kubectl apply -f alertmanager-cm.yaml
kubectl delete -f prometheus-alertmanager-cfg.yaml
kubectl apply -f prometheus-alertmanager-cfg.yaml
kubectl delete -f prometheus-alertmanager-deploy.yaml
kubectl apply -f prometheus-alertmanager-deploy.yaml

评论